

 Theory of

Computation

Fifth macro: Y ← Y × X

Algorithm 17.8 simulates the macro Y ← Y × X in Simple

Language. We can use the addition macro because integer

multiplication can be simulated by repeated addition. Note

that we need to preserve the value of X in a temporary

variable, because in each addition we need the original value

of X to be added to Y.

Sixth macro: Y ← YX

Algorithm 17.9 simulates the macro Y ← YX in Simple

Language. We do this using the multiplication macro,

because integer exponentiation can be simulated by repeated

multiplication.

Seventh macro: if X then A

Algorithm 17.10 simulates the seventh macro in Simple

Language. This macro simulates the decision-making (if)

statement of modern languages. In this macro, the variable X

has only one of the two values 0 or 1. If the value of X is not

0, A is executed in the loop.

Other macros

It is obvious that we need more macros to make Simple

Language compatible with contemporary languages.

Creating other macros is possible, although not trivial.

Input and output

In this simple language the statement read X can be

simulated using (X ← n). We also simulate the output by

assuming that the last variable used in a program holds what

should be printed. Remember that this is not a practical

language, it is merely designed to prove some theorems in

computer science.

17-2 THE TURING MACHINE

The Turing machine was introduced in 1936 by Alan M.

Turing to solve computable problems, and is the

foundation of modern computers. In this section we

introduce a very simplified version of the machine to

show how it works.

Turing machine components

A Turing machine is made of three components: a tape, a

controller and a read/write head (Figure 17.2).

Figure 17.2 The Turing machine

Tape

Although modern computers use a random-access storage

device with finite capacity, we assume that the Turing

machine’s memory is infinite. The tape, at any one time,

holds a sequence of characters from the set of characters

accepted by the machine. For our purpose, we assume that

the machine can accept only two symbols: a blank (b) and

digit 1.

Figure 17.3 The tape in the Turing machine

Read/write head

The read/write head at any moment points to one symbol on

the tape. We call this symbol the current symbol. The

read/write head reads and writes one symbol at a time from

the tape. After reading and writing, it moves to the left or to

the right. Reading, writing and moving are all done under

instructions from the controller.

Controller

The controller is the theoretical counterpart of the central

processing unit (CPU) in modern computers. It is a finite

state automaton, a machine that has a predetermined finite

number of states and moves from one state to another based

on the input.

Figure 17.4 Transition state diagram for the Turing machine

