$$
\begin{aligned}
& \text { Theory of } \\
& \text { computation }
\end{aligned}
$$

Fifth macro: $\mathbf{Y} \leftarrow \mathbf{Y} \times \mathbf{X}$

Algorithm 17.8 simulates the macro $\mathrm{Y} \leftarrow \mathrm{Y} \times \mathrm{X}$ in Simple Language. We can use the addition macro because integer multiplication can be simulated by repeated addition. Note that we need to preserve the value of X in a temporary variable, because in each addition we need the original value of X to be added to Y .

Algorithm 17.8 Macro $\mathrm{Y} \leftarrow \mathrm{Y} \times \mathrm{X}$
TEMP $\leftarrow Y$
$Y \leftarrow 0$
while (X)
\{

$$
\begin{aligned}
& \text { decr }(X) \\
& Y \leftarrow Y+T E M P
\end{aligned}
$$

\}

Sixth macro: $\mathrm{Y} \leftarrow \mathrm{Y}^{\mathrm{X}}$

Algorithm 17.9 simulates the macro $\mathrm{Y} \leftarrow \mathrm{Y}^{\mathrm{X}}$ in Simple Language. We do this using the multiplication macro, because integer exponentiation can be simulated by repeated multiplication.

Algorithm 17.9 Macro $Y \leftarrow Y^{X}$

```
TEMP \leftarrowY
Y}\leftarrow
while (X)
{
```

```
decr (X)
```

decr (X)
Y}\leftarrowY\timesTEM
Y}\leftarrowY\timesTEM
}

```

\section*{Seventh macro: if X then A}

Algorithm 17.10 simulates the seventh macro in Simple Language. This macro simulates the decision-making (if) statement of modern languages. In this macro, the variable X has only one of the two values 0 or 1 . If the value of \(X\) is not \(0, \mathrm{~A}\) is executed in the loop.

Algorithm 17.10 Macro if \(X\) then \(A\)
```

while (X)
{
decr (X)
A
}

```

\section*{Other macros}

It is obvious that we need more macros to make Simple Language compatible with contemporary languages. Creating other macros is possible, although not trivial.

\section*{Input and output}

In this simple language the statement read \(X\) can be simulated using \((\mathrm{X} \leftarrow n)\). We also simulate the output by assuming that the last variable used in a program holds what should be printed. Remember that this is not a practical language, it is merely designed to prove some theorems in computer science.

\section*{17-2 THE TURING MACHINE}

The Turing machine was introduced in 1936 by Alan M. Turing to solve computable problems, and is the foundation of modern computers. In this section we introduce a very simplified version of the machine to show how it works.

\section*{Turing machine components}

A Turing machine is made of three components: a tape, a controller and a read/write head (Figure 17.2).


Tape

Figure 17.2 The Turing machine

\section*{Tape}

Although modern computers use a random-access storage device with finite capacity, we assume that the Turing machine's memory is infinite. The tape, at any one time, holds a sequence of characters from the set of characters accepted by the machine. For our purpose, we assume that the machine can accept only two symbols: a blank (b) and digit 1.


Figure 17.3 The tape in the Turing machine

\section*{Read/write head}

The read/write head at any moment points to one symbol on the tape. We call this symbol the current symbol. The read/write head reads and writes one symbol at a time from the tape. After reading and writing, it moves to the left or to the right. Reading, writing and moving are all done under instructions from the controller.

\section*{Controller}

The controller is the theoretical counterpart of the central processing unit (CPU) in modern computers. It is a finite state automaton, a machine that has a predetermined finite number of states and moves from one state to another based on the input.
\(x / y / \mathrm{R}\) : if \(x\) is read, write \(y\) and move to the right
\(x / y / \mathrm{L}\) : if x is read, write \(y\) and move to the left
\(x / y / \mathrm{N}\) : if x is read, write \(y\) and no move


Figure 17.4 Transition state diagram for the Turing machine

Table 17.1 Transition table
\begin{tabular}{|c|c|c|c|c|}
\hline Current state & Read & Write & Move & New state \\
\hline A & b & b & R & A \\
\hline A & 1 & 1 & R & B \\
\hline B & b & 1 & R & B \\
\hline B & 1 & b & N & C \\
\hline C & b & b & L & A \\
\hline C & 1 & 1 & L & B \\
\hline
\end{tabular}```

